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ABSTRACT

Within-subject analysis in fMRI relies on both (i) a detection

step to localize which parts of the brain are activated by a

given stimulus type, and on (ii) an estimation step to recover

the underlying brain dynamics. In [1], a Bayesian detection-

estimation approach that jointly addresses (i)-(ii) has been

proposed. In the latter, a functionally homogeneous parcel-

lation of the brain is required prior to this analysis. If tools

exist to produce suitable parcellations [2], the question re-

mains open of its impact on both activation detection and

dynamics estimation. Here, we present a sensitivity analy-

sis of this Bayesian model regarding the parcellation. We

show that some activating clusters are stable regarding parcel-

lation while others are highly variable. The overall procedure

is quite sensitive to the input parcellation as the uncertainty of

the estimated effect is correlated to its size. The perspective is

to extend our model with an adaptive parcellation combined

with the detection-estimation.

Index Terms— sensitivity analysis, Bayes procedures,

Magnetic resonance imaging.

1. INTRODUCTION

The overall aim of functional Magnetic Resonance Imaging

(fMRI) is the understanding of the relation between func-

tions (cognitive or sensori-motor) and anatomic structures in

the human brain. In order to obtain results relevant to the

population scale, the same fMRI experiment is repeated over

a cohort of volunteers or patients. Each fMRI acquisition

on one subject yields the variations of the blood oxygena-

tion over a 4-dimensional lattice (3D in space, and time): the

BOLD signal. The analysis of such group data is performed

in two steps: results of separate within-subject analyses (“first

level”) are combined in a between-subject analysis (“second

level”). Here, we are interested in the first level, fulfilling it

by a joint detection-estimation (JDE) process [1]. The central

assumption governing the Hemodynamic Response Function
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(HRF) estimation in this JDE is the shape invariance of the

BOLD response when considering a small part of the brain.

Indeed, the HRF is interpreted as a regional physiological re-

sponse inherent to the vascular system spanning a region of

interest and locally modulated only in magnitude by neural-

induced activity at the voxel level. The optimal setting of

the parcel number to correctly parcellate the brain has been

adressed in [3]: around 400 to 500 parcels with sizes of few

hundreds of voxels. Here, we are interested in the effect of po-

sition: if the local aspect prevails in the HRF estimation, then

shifts in parcel positions would induce little variability in the

results. At the opposite, observing strong variations would

imply that there exist some local frontiers/edges where hemo-

dynamics significantly change. In this case, we would con-

firm that the most reliable parcellation procedure is manda-

tory prior to the Bayesian region-based analysis, in order to

clearly identify these regions.

2. PARCELLING THE BRAIN

Apart from serving the purpose of the Bayesian first level

fMRI analysis presented here, brain parcellations are typi-

cally used to define Regions Of Interest (ROIs) in order to

better understand the anatomical substrate of brain activity.

For instance, anatomical parcellations that describe and clus-

ter the cortical surface into gyri [4] can help to better define

activated regions.

In another respect, a complete region-based approach

comprising the first and second level analyses can be carried

out as in [2]. Given the mis-registrations remaining even

after spatial normalization, a given voxel in the common

MNI space may not represent the same anatomo-functional

structure across subjects. Grouping voxels into parcels

provides the ability to correct part of the functional mis-

correspondance.
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Fig. 1. Parcel-based model of the BOLD signal in the JDE frame-

work. Forward BOLD signal generations are detailed for a single

brain parcel (hatched area). Two different stimulus types are con-

sidered, represented by squares or circles surrounding the neural re-

sponse levels am
j .

3. DETECTION-ESTIMATION PROCEDURE

Here, the parcel-based model of the BOLD signal intro-

duced in [5] is adopted: a linear time-invariant (LTI) sys-

tem. It characterizes every parcel P = (Vj)j=1:J by a

single HRF shape and accounts for voxel-dependent and

stimulus-related fluctuations of the magnitude of the BOLD

signal. The fMRI time course measured in voxel Vj at

times (tn)n=1:N (where tn = nTR, N being the num-

ber of scans and TR, the time of repetition) then reads

yj =
∑M

m=1 am
j Xmh + P�j + bj , ∀ j, Vj ∈ P ,m =

1 : M stands for the condition index. This model remains

time-invariant while it incorporates spatially-varying and

stimulus-related magnitudes, called Neural Response Lev-
els (NRLs) and denoted = (am

j )j=1:J,m=1:M in the follow-

ing. Xm = (xm
tn−dΔt)n=1:N,d=0:D denotes the N × (D+1)

binary matrix that codes the arrival times of the mth stimu-

lus which are approximated to fit a Δt-sampled grid, where

Δt is the sampling period of the HRF (Δt < TR). Vec-

tor h = (hdΔt)d=0:D represents the unknown HRF shape

in parcel P . Note also that P �j models a low-frequency

trend to account for physiological artifacts; we will note

l = (�j)j=1:J . Variable bj stands for the noise and for

simplicity reasons, we only consider a Gaussian white noise

model bj ∼ N (0, σ2
bj
). See Fig. 1 for an illustration of this

forward modeling.

Within the Bayesian framework, priors are expressed on

every sought object: Gaussian prior on h with a smooth

constraint on its second derivative expressed within its co-

variance matrix, spatial mixture models on , Gaussian

non-informative prior on l and non-informative priors on

every hyper-parameters Θ. Refer to [1] for their detailed

expressions. Assuming no further prior dependence between

parameters, formal application of the chain rule yields the

expression of the joint posterior distribution p(h, , ,Θ | )
(l are analytically marginalized). We indirectly generate sam-

ples drawn from this posterior distribution through Gibbs

Sampling, for which the full conditional probability den-

sity function of each variable needs to be derived. Posterior

mean (PM) estimates are computed from these samples ac-

cording to: x̂PM =
∑L1

k=L0
x(k)/L, ∀x ∈ {h, ,Θ} ,

where L = L1 − L0 + 1 and L0 stands for the length of the

burn-in period. Note that this estimation process has to be

repeated independently over each parcel of a subject’s brain.

The main assets of this approach compared to the classical

GLM analysis lie in its ability to process unsmoothed fMRI

data and in the non-parametric HRF modeling. The latter al-

lows the treatment of data with “atypical” dynamics (e.g. [6])

and also the detailed study of the HRF shape across regions.

The procedure implies an increased computation time com-

pared to a simpler classical GLM approach but is still quite

feasible since a whole brain analysis takes around 1.5 hour

on a 2.4 Ghz single processor unit.

4. SENSITIVITY ANALYSIS

In the present sensitivity analysis (SA) framework, the out-

puts of interest are the NRLs and HRF h estimates, and

the input of interest is the parcellation (P). Considering any

one-factor SA methodology [7], the evaluation of ∂
∂P and ∂h

∂P
would have to be computed. However, the lack of a closed

form expression makes the evaluation of the partial derivative

with respect to P unreachable. Instead, we rather resort to a

Monte Carlo scheme where variability in the output is studied

when the model is applied to random inputs.

Random parcellations must be generated under reasonable

constraints: (i) parcel geometry must be compact and convex

to prevent over-streched regions and (ii) parcel size must not

be too variable since we rather want to test the effect of posi-

tion here. Voronoi diagrams satisfy these constraints and are

therefore built to generate suitable parcellations.

5. DATA PROCESSING

Real fMRI data were recorded during an experiment designed

to map auditive and visual brain functions, which consisted of

a single session of N = 125 scans lasting TR = 2.4 s, each

yielding a 3-D volume composed of 64 × 64 × 32 voxels.

The paradigm was fast event-related comprising sixty auditive

and visual stimuli. An antomo-funtional mask was extracted

from these data. It defined the set of positions involved in

the generation of parcellations. We considered only the left

hemisphere of the brain (half of the original mask) to reduce

the problem dimension but still keep regions involved in the

paradigm (temporal and occipital area for auditive and visual

conditions respectively).

Within this mask, we generated spatially randomized seeds

for the Voronoi diagram. Note that peripheral positions were

discarded to avoid too small regions. The Voronoi diagram

was computed and each voxel labeled using the index of the

closest Voronoi patch. Such a parcellation is illustrated in

Fig 2(a). We finally produced a set of Γ = 100 parcellations
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(a) (b)

Fig. 2. Parcellations of the brain: (a) using the Voronoi based

method - (b) as obtained with an optimal anatomo-functional par-

cellation as in [2].

denoted {Pγ}γ=1:Γ. We used each element of this set as in-

put to the JDE procedure applied to the unsmoothed fMRI

data.

6. ANALYSIS

For the sake of conciseness, we will only present results con-

cerning the auditive condition (m = 1). For each voxel j,

we define the set of NRL estimates ξ̂j =
{
(âj)γ

}
, and the

set of HRF estimates ζ̂j =
{
(ĥj)γ

}
, with γ = 1 : Γ. Note

that the JDE procedure yields only one HRF estimate per re-

gion. Therefore, to enable multiple comparison of voxels, we

assign the regional HRF estimate to every voxel comprising

it.

In order to measure the estimation variability induced

by varying parcellation, we are interested in the mean NRL

estimates and their associated standard deviation, say: E
[
ξ̂j

]
and

√
V

[
ξ̂j

]
. To sum-up the variability of HRF estimations

at the voxel level, we will focus on its temporal variabil-

ity through the standard deviation of its time-to-peak, i.e√
V [τ̂ ttp] where τ̂ ttp =

{
Δt× argmaxd(ĥj)γ

}
j=1:J,γ=1:Γ

.

7. RESULTS

Note that all figures concerning the NRL estimates have the

same color scale to make comparisons easier.

By way of comparison, Fig. 3 presents results on single

runs of the JDE procedure either using an optimal parcellation

or a randomized parcellation. A first comparison indicates

that the optimal parcellation yields more contrasted NRLs and

more clear-cut activation clusters.

In what follows, we consider results of the Monte Carlo

sensitivity analysis, i.e. results from the JDE procedure it-

erated over the complete set of parcellations. Fig. 4 depicts

results when the parcellation is varied randomly. More pre-

cisely, Fig. 4(top row) reports the mean NRL estimations over

the Monte Carlo simulations while Fig. 4(bottom row) show

their standard deviations. We can first observe that the over-

all NRLs estimates have comparable values to their standard

.

Fig. 3. NRL estimates (ba1) as obtained by a single run of the JDE

procedure: (top row) using a suitable parcellation as in Fig 2(b) —

(bottom row) using a random parcellation as in Fig 2(a). From left

to right: axial, coronal and sagittal views.

Fig. 4. Results on NRLs when randomizing parcellation: (top row)

means of NRL estimates E
ˆbξj

˜
— (bottom row) standard deviation

of NRL estimates

q
V

ˆbξj

˜
.From left to right: axial, coronal and

sagittal views.

deviations, meaning that incertainty on the effect is correlated

to its size. It indicates that the JDE is quite sensitive to the in-

put parcellation. Besides, on Fig. 4(top left) we can identify

two close activation clusters. As shown in the sagittal view

of Fig. 4(bottom row), the more frontal cluster has a strong

standard deviation whereas the more occipital cluster shows

little standard deviation.

By comparing results in Fig. 4(top row) to Fig. 3(top row),

there is a consistency between the mean NRL estimates ob-

tained from multiple JDE runs with Monte Carlo simulations

and the NRL estimates obtained with a single JDE run with

the optimal parcellation. Nevertheless, this is at the price of
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Fig. 5. Results on HRF estimation sensitivity: standard deviations

of times-to-peak in seconds. From left to right: axial, coronal and

sagittal views.

Time in Δt = 0.6s
Fig. 6. Results on estimated HRFs at a voxel within an activating

cluster, with runs of JDE over different Voronoi-based parcellations.

HRFs are color coded corresponding to different runs.

increasing the incertainty.

Results concerning the HRF estimation sensitivity are

shown in Fig. 5-6. Time-to-peak maps indicate a good re-

liability of the dynamics estimation w.r.t. parcellation as

standard deviation is around 0.2 s in activating clusters. Note

that non-activating regions yield high variability in the HRF

estimation, which is sensible since the model tries to fit sig-

nals made mostly of noise. Results on the estimated HRF

time courses confirm this since the shapes do not vary much

w.r.t. parcellation - Fig. 6. Note that scales of HRFs are arbi-

trary here; they are not relevant since we focus on the shape
variability.

8. DISCUSSION

In conclusion, since we observe that size of the mean NRL

estimates across Monte Carlo simulations are correlated with

their standard deviations, we can conclude that the parcel po-

sition play an important role in the optimal parcellation and

that the local aspect not only prevails in the detection part of

the procedure. In contrast, the estimation part of the proce-

dure seems to be less sensitive to the parcellation since esti-

mated HRF shapes vary littlely in activating regions.

Besides, the protocol used here to assess the sensitivity to-

wards position variabililty in the input parcellation of JDE

can be seen as a marginalization of this input parameter. Er-

rors associated to each activation cluster then inform on its

reliability. For example, we identified one activating cluster

associated with strong standard deviation of the NRLs esti-

mates w.r.t parcellation, whereas another cluster was associ-

ated to a lower standard deviation. However, coupling the

sensitivity analysis to the JDE process is not tenable in terms

of computation time (around 10 hours, parallelizing over 30

processors). Therefore, we demonstrate the need for a reliable

parcellation prior to the procedure. In another respect, if such

parcellation is not achievable, the clustering procedure should

be combined with the JDE procedure in an iterative scheme.

Formally, this issue takes place in model selection problems

and could be addressed for instance using reversible jumps

Markov Chain Monte Carlo methods [8].
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